Ultrasound
Procedural guidance part 2

Rohit Patel, MD
Shands Hospital at the University of Florida
Gainesville, FL
What procedures can I use ultrasound for?

Central venous access, Arterial line access, Peripheral vein access

Thoracentesis, *pleural effusion drainage*

Pericardiocentesis - briefly discuss

Lumbar puncture - briefly discuss

Others: foreign body removals, arthrocentesis, abscess drainage, paracentesis
Pleural effusions

Focused Questions:

How much fluid is present?

Where is best location to do procedure?

Probe: Abdominal probe
Pleural effusion - introduction

Common in critically ill patients - 62% in MICU, 41% present on admission

This application in itself might be reason enough to use US

Evaluates volume, nature of effusion, and best location

Collects in dependent areas

Traditionally located from abdominal exam, but to be more consistent should be done through PLAPS point - "one shot" should be this location

Principles of lung ultrasound

Anterior zone = "BLUE hands"

Lateral zone

Posterior zone

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Upper BLUE point: between third and fourth finger of BLUE hand, at palmar insertion

Lower BLUE point: middle of palm of lower BLUE hand; allows for avoidance of heart in most cases

Phrenic line: continuation of this line locates the lateral place

PLAPS point: "posterior and/or lateral alveolar and/or pleural syndrome" - intersection between the posterior axillary line and the transversal line continuing posteriorly to the lower BLUE point; also can have extended PLAPS points
Principles of lung ultrasound

Stage 1: anterior wall

Stage 2: adds lateral wall from anterior to posterior axillary line

Stage 3: external part of the posterior wall; aim from back towards sky; no visual control of probe so need to hold with whole hand; can depress bed if need to

Stage 4: patients must be positioned laterally or sitting; can also study the apex
Principles of lung ultrasound

Upper and Lower BLUE points

Phrenic point

PLAPS point

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Pleural effusion - the signs

Quad sign: static sign, borders are pleural line, upper and lower shadows of rib, and the deep border which is always roughly parallel to the pleural line and regular (represents lung surface)

Jellyfish sign: aerated lung floats over effusion; as lung becomes more injured it becomes more towards same density as fluid surrounding it (looks like algae...)

Sinusoid sign: dynamic sign, respiratory variation of the interpleural distance
More on deep border: This line is called the lung line and is the visceral pleura; and visible when both pleura are separates by a structure that allows ultrasound transmission; the lung itself can be normal, show alveolar consolidation, or B lines.
Pleural effusion - sinusoid sign

Sinusoid sign: dynamic sign, respiratory variation of the interpleural distance

Also indicates low viscosity; very viscous or septate will not show Sinusoid sign
Pleural effusion - jellyfish sign

Jellyfish sign: aerated lung floats over effusion; as lung becomes more injured it becomes more towards same density as fluid surrounding it (looks like algae...)

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Pleural effusion - are we done?

Transudate, exudate, purulent pleurisy

MICU: cardiac failure (35%), atelectasis (23%), parapneumonic (11%), empyema (1%)

Transudates are anechoic, anechoic effusions can be transudates or exudates, and all echoic effusions are exudates

Ultrasound not reliable for indicating puncture is not necessary

Yang. AJR AM J Rad. 1992
Pleural effusion - are we done?

Plankton sign: visualization within tissue like image of a slow whirling movement of numerous particles; hyperechoic structures should correspond to infectious gas; can be seen in hemothorax (should use PLAPS point)

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Pleural effusion - are we done?

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Tissue like echogenicity, Separated by lung line (quad sign)
Plankton sign
Shred sign indicating alveolar origin
Hyperechoic points generating dynamic air bronchograms
(indicating non atelectatic origin)
Abolished lung sliding, no sinusoid sign, indicate infective process

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Pleural effusion - ghosts

Can clear by doing direct intercostal scans

Lichtenstein. Textbook. Whole body ultrasonography in the critically ill.
Pleural effusion - pitfalls

Ghost images from prior slide

Hiatal hernia full of fluid gives massive lateroposterior fluid image; swirl sign that indicates air fluid level,

A fluid image without sinusoid sign might be: alveolar consolidation, an encysted effusion at the periphery of a lung which has lost its compliance, or a very viscous effusion

Silicone in breast implants
Pleural effusion - the numbers

Quad and sinusoid signs confirm presence with 97% with gold standard is withdrawal of fluid; 93% with CT as gold standard

Ultrasound detects effusions occult on radiography; up to 525 mL can be missed on bedside radiograph

Note: effusions allow you to see deep structures like aorta better, consider exploring prior to evacuation

Lichtenstein. Intensive care medicine. 1999
Lichtenstein. Anesthesiology. 2004
Muller. Radiology. 1993
Collins. Radiology. 1972
Pleural effusion - quantity

Minor, moderate, large?...More important might be full clinical state; a diseased lung will not tolerate restrictive syndrome as well

Guidelines?

Several protocols for indicating volume of effusion

PLAPS index: probe at PLAPS point and measuring from pleural line to lung line; probe must be as tangential as possible or will overestimate
Pleural effusion - quantity

Measure on expiration since small effusions will have lung line touch pleural line on inspiration

Usually between 1 mm to 4 cm, rarely 5, exceptionally 6, and never 7; a 10 cm value questions technique

PLAPS index

0.3 cm = 15-30 mL
1 cm = 75-150 mL
2 cm = 300-600 mL
3.5 cm = 1500-2500 mL
Pleural effusion - quantity

Limitations: lung floating in early fast effusions, massive consolidation will make lung dive towards earth driving back the pleural effusion

Looking at anterior or phrenic points (usually indicates abundant effusion)

Many other methods

Talmor. Surgery. 1998
Roch. Chest. 2005
Vignon. Crit Care Med. 2005
Balik. Intensive Care Med. 2006
1. Presence of quad, sinusoid sign
2. Safety distance of 15 mm seen over three adjacent interspaces
3. Check for absence of interposition of critical structures: lung, aorta, heart, liver, or spleen; move more posterior if lung comes close with inspiration
4. Should be done immediately at time of ultrasound evaluation
5. Technical notes: remember skin folds and not too posterior where dislodgements, infection, decubitus can occur
Lumbar puncture

Focused questions:

Where is the interspinous space?

How deep is the interspinous ligament?

Probe: High frequency linear array
Lumbar puncture

Figure 13.30
Transverse probe positioning (left) and the image obtained at this level (right). Note the crisp white line and posterior shadowing which delineates the spinous process.

Figure 13.31
Marking interspinous space.

Figure 13.32
Ultrasound image of interspinous space. Bold arrows mark vertebral shadows.
Lumbar puncture - technique

Note midline in transverse and longitudinal directions

Note depth to interspinous ligament

Key is all in setup

Pitfalls: Know trajectory of ultrasound beam, not just vertical and horizontal coordinates, X doesn't always just mark the spot