Beyond focused assessment with sonography for trauma: ultrasound creep in the trauma resuscitation area and beyond Kazuhide Matsushima^a and Heidi L. Frankel^b

^aDivision of Trauma, Acute Care and Critical Care Surgery, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania and ^bRA Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA

Correspondence to Kazuhide Matsushima, MD, Penn State Milton S. Hershey Medical Center, 500 University Drive, P.O. Box 850, MC H075, Hershey, PA 17036, USA

Tel: +1 717 531 6066; fax: +1 717 531 0321; e-mail: kmatsushima@hmc.psu.edu

Current Opinion in Critical Care 2011, 17:606-612

Purpose of review

The use of ultrasound for the management of the injured patient has expanded dramatically in the last decade. The focused assessment with sonography for trauma (FAST) has become one of the fundamental skills incorporated into the initial evaluation of the trauma patient. However, there are significant limitations of this diagnostic modality as initially described. Novel ultrasound examinations of the injured patient, although useful, must also be considered carefully.

Recent findings

Increasing evidence supports the high specificity of FAST for detecting a pericardial effusion and intra-abdominal free fluid (hemorrhage) in the patient with blunt injury. On the other hand, a so-called negative FAST result still requires further diagnostic work up given its low sensitivity. Similarly, the role of FAST in penetrating abdominal trauma appears to be limited because of lower sensitivity for visceral injury compared to other modalities. Extended FAST (EFAST), that adds a focused thoracic examination, has high accuracy for the detection of pneumothorax comparable to computed tomographic scan, the significance of which is not currently known. Finally, the utility of intensivist-performed ultrasound in the ICU is expanding to limited hemodynamic assessment and facilitation of central venous catheter placement.

Summary

The indications for FAST and additional ultrasound studies in the injured patient continue to evolve. Application of sound clinical evidence will avoid unsubstantiated indications for ultrasound to creep into our clinical practice.

Keywords

cardiac function, central venous catheter placement, extended focused assessment with sonography for trauma, focused assessment with sonography for trauma, trauma, ultrasound, volume status

Curr Opin Crit Care 17:606-612 © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins 1070-5295

Introduction

For over a decade, there has been unbridled enthusiasm for the use of ultrasound as an adjunct imaging methodology in the care of the injured patient [1,2,3[•]]. Accordingly, the focused assessment with sonography for trauma (FAST) and modifications thereof are currently a key component of the standard initial trauma evaluation [4]. However, as other modalities, such as multidetector computed tomography scanning (MDCT), become faster and more accurate, the indications for FAST are being challenged [5-7]. Others have extended the goals of FAST - that is, the detection of pericardial and intraperitoneal fluid – to further investigation of thoracic injury. In addition to evaluation of the pericardial space and intraperitoneal cavity, this extended FAST (EFAST) searches for traumatic pneumothorax and hemothorax [8]. Finally, the appropriate use of ultrasound techniques in the critical care setting for the care of the injured patient will be reviewed.

Focused assessment with sonography for trauma in modern trauma work up: current indications

Ultrasound has been utilized for the evaluation of injured patients in Europe and Japan since the 1980s (Table 1 $[9-15,16^{\bullet\bullet}]$) [17,18]. The first case series description of ultrasound usage in the trauma setting in the United States was published in 1992 by Tso *et al.* [19]. Subsequently, Rozycki *et al.* [9] demonstrated the efficacy of ultrasound with a sensitivity of 81.5% and specificity of 99.7% for detecting pericardial effusion and intraperitoneal free fluid (hemorrhage) in a large prospective study. The nomenclature of FAST was first described by their group [9,20] and this acronym for 'Focused

1070-5295 © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

DOI:10.1097/MCC.0b013e32834be582

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Assessment with Sonography for Trauma' has gained consensus at an international conference held in 1997 (the 'A' had initially represented abdominal) [2]. In FAST, one pericardial and three intraperitoneal views are to be obtained within 5 min. This quickly performed bedside ultrasound technique is used exclusively for detecting fluid collections that can be seen as low-echoic areas (black).

Focused assessment with sonography for trauma for blunt injury

Blunt trauma patients with suspected abdominal or cardiac injury by history and physical examination typically require further imaging for diagnosis. As FAST is noninvasive and can be performed readily in the trauma resuscitation area, it is the diagnostic modality of choice for hemodynamically unstable patients. In this setting, if FAST demonstrates free fluid in the peritoneal cavity (presumably hemoperitoneum), emergent exploratory laparotomy is indicated [3[•]]. Neal *et al.* [21[•]] recently demonstrated that obtaining an abdominal computed tomographic (CT) scan during the initial work up of a hemodynamically unstable patient resulted in significantly higher mortality using data from the National Trauma Data Bank. In other words, the classical teaching 'never send an unstable patient to CT' is still true despite the rapidity of the study. However, one caveat of this strategy is the relatively low sensitivity of FAST in select unstable patients. Factors associated with a false-negative FAST include retroperitoneal injuries such as pelvic fracture or renal trauma [22]. Although early data suggested nearly 100% accuracy of FAST in hypotensive blunt abdominal injured patients, the sensitivity of FAST for intraperitoneal hemorrhage was reported to be only 26% in those with pelvic fractures in a later study [10,15]. Therefore, negative FAST results in hemodynamically unstable patients do not necessarily exclude an intraabdominal source of hemorrhage. In addition to the search for other bleeding sources for the cause of hemodynamic instability, intra-abdominal investigation needs to be continued simultaneously and can be accomplished by diagnostic peritoneal aspiration/diagnostic peritoneal lavage (DPA/DPL). We prefer aspiration over lavage, as fluid instillation may ultimately be confusing, should a

Key points

- Focused assessment with sonography for trauma (FAST) is most accurate in the evaluation of the hemodynamically unstable blunt injured patient. A negative examination in this setting should be followed up with a complementary study, such as a diagnostic peritoneal aspiration, particularly in the setting of a pelvic fracture in which the sensitivity of FAST is lower.
- FAST should only be performed in the hemodynamically stable blunt injured patient for the purposes of teaching and triage (i.e. in a multiple patient scenario).
- Because of its low sensitivity and high specificity, FAST should not be used as a primary diagnostic modality for penetrating abdominal trauma. FAST may assist in the triage of cavities in those with multiple wounds who require intervention.
- EFAST can accurately diagnose hemothoraces and pneumothoraces. However, the significance of these (and the need for intervention) is currently unknown. Therefore, we recommend that additional imaging be obtained to determine the appropriate clinical course of action.
- Ultrasound can be used to accomplish a focused echocardiographic examination of the injured patient in the ICU to determine volume status and cardiac function.
- Ultrasound should be used to guide (particularly internal jugular) central line insertion and can eliminate the need for a postprocedural radiograph.

CT scan be performed at a later time once the patient has stabilized.

Conversely, the role of FAST has always been questioned in hemodynamically stable patients because of its low sensitivity and inability to provide organ-specific information [16^{••}]. The development of MDCT, which can be more quickly and accurately performed than previously, has made a tremendous impact on the management of the injured [5–7,23,24]. Whole-body MDCT (pan-scanning) enables rapid injury identification. Huber-Wagner *et al.* [7] have demonstrated significantly

Table 1 Reported results of focused assessment with sonography for trauma (abdomen)

······································							
Author	Year	п	End point	Injury type	Sensitivity	Specificity	Accuracy
Rozycki <i>et al.</i> [9]	1995	295	Fluid	Blunt	78.6	100	98
-		76	Fluid	Penetrating	83.8	97.4	90.7
Rozycki <i>et al.</i> [10]	1998	1227	Fluid	Blunt	78.3	99.8	98.5
Boulanger et al. [11]	2001	72	Fluid	Penetrating	67	98	89
Udobi <i>et al.</i> [12]	2001	75	Fluid	Penetrating	46	94	68
Soffer et al. [13]	2004	177	Fluid	Penetrating	48	98	85
Kirkpatrick et al. [14]	2004	38	Fluid	Penetrating	71.4	95.8	86.8
Friese et al. [15]	2007	96	Fluid	Blunt	26.1	96.3	65.6
Natarajan <i>et al.</i> [16 ^{••}]	2010	2105	Injury	Blunt	43	99	94.1

FAST, focused assessment with sonography for trauma.

better outcome in those who underwent pan-scanning as their initial imaging evaluation in their multicenter retrospective study. They showed that the usage of whole-body CT including an unenhanced head CT and contrast-enhanced chest, abdomen and pelvis CT with full spine imaging is shown to be a significant factor for patient survival after blunt injury. It had been suggested that FAST potentially could be a useful screening tool for blunt injured patients to reduce the use of CT scanning [4,25,26]. However, in addition to its low sensitivity for detection of free fluid in the hemodynamically stable patient, the inability to acquire organspecific injury in the absence of hemoperitoneum that occurs in up to one-third of patients is problematic [27]. In hemodynamically stable patients, the sensitivity of FAST performed by residents under attending trauma surgeon supervision was 40.8%, compared to 57% in unstable patients. Furthermore, among 87 stable patients with a false-negative FAST, 19 patients (22%) required an exploratory laparotomy after positive CT scan [16^{••}]. It is not surprising that an increasing number of stable trauma patients undergo CT scanning as the initial diagnostic imaging study [28].

Focused assessment with sonography for trauma for penetrating injury

Early studies suggested comparable results for FAST in penetrating as compared to blunt injury (sensitivity 83.8 vs. 78.6%, specificity 97.4 vs. 100%) [9,29]. Yet, even this work included patients with false-negative FAST examinations, with missed diaphragmatic and hollow visceral injury necessitating laparotomy. As these injuries are fairly common in penetrating trauma victims and can be life-threatening, the indication and utility of FAST in penetrating trauma has been questioned [11-14, 30[•],31]. Although hemodynamically unstable patients with penetrating abdominal injury require laparotomy, various diagnostic modalities such as local wound exploration or DPL have been tried to reduce the rate of nontherapeutic laparotomy in stable patients [32,33]. Boulanger et al. [11] performed FAST in 66 stable penetrating injured patients and demonstrated a sensitivity, specificity and accuracy of 67, 98 and 89%, respectively. Likewise, Udobi et al. [12] concluded that a positive FAST in the face of penetrating trauma strongly predicted significant intra-abdominal injury; however, negative FAST required additional diagnostic testing based

on low sensitivity (46%). Subsequently, Soffer *et al.* [13] questioned whether the findings of FAST changed initial management of penetrating torso injury patient in their prospective study. Of 177 patients, only three patients' management was effectively changed by positive ultrasound findings. They confirmed the low sensitivity (48%)of FAST, and noted a significant number of missed hollow viscus and diaphragm injuries (up to 67%). Finally, in a recent multicenter trial conducted by the Western Trauma Association, FAST was used as the primary management decision tool in only 4% of cases for the initial work up of anterior abdominal stab wounds [33]. It is noteworthy that the sensitivity of FAST for therapeutic laparotomy, not intra-abdominal-free fluid, was as low as 21%. It is also remarkable that 28% of patients with an abnormal FAST had a nontherapeutic laparotomy or did not require laparotomy. Ultrasound can be also used for detecting fascial violation in the abdominal stab wound patient [34,35]. However, a negative study should not preclude the further imaging work up due to its low sensitivity, 59%.

On the other hand, for the patient with suspicion for a penetrating cardiac injury, a single institution and a prospective multicenter study both showed consistently high accuracy of FAST (100 and 97.3%, respectively) [36,37].

Extended focused assessment with sonography for trauma

Pneumothorax and hemothorax are reportedly found in more than half of all trauma patients with thoracic injury (Table 2 [8,38,39,40^{••}]) [41,42]. It is often difficult to appreciate the classic clinical findings of hemothorax, pneumothorax (decreased breath sounds, hyper-resonance or dullness in percussion, or associated subcutaneous emphysema) in the middle of a chaotic trauma resuscitation environment [43]. Not surprisingly, a chest radiograph taken with a patient in the supine position does not have favorable sensitivity for either hemothorax or pneuomothorax [8,39,40^{••},44[•]]. The incidence of the clinical entity of the occult pneumothorax that is not visualized on plain chest radiography but detected on CT scanning is reported to be approximately 5% of all trauma patients [45]. Further, Ball et al. [46] demonstrated that 55% of pneumothoraces were occult among patients with Injury Severity Score (ISS) at least 12.

Table 2 Reported results of extended focused assessment with sonography for trauma (pneumothorax)

Author	Year n		Type of injury	Sensitivity	Specificity	Accuracy
Dulchavsky et al. [38]	2001	382	Blunt/penetrating	95	100	99
Kirkpatrick et al. [8]	2004	208	Blunt/penetrating	58.9	99.2	93.7
Soldati <i>et al.</i> [39]	2008	109	Blunt	92	99.4	98.6
Nandipati <i>et al.</i> [40 ^{••}]	2010	204	Blunt/penetrating	95	99	99

EFAST, extended FAST.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Figure 1 Extended focused assessment with sonography for trauma findings

(a) Normal lung ultrasound. Comet tail sign (arrow) and lung sliding between hyperechoic parietal and visceral pleura (arrow head) can be observed. (b) Hemothorax/pleural effusion. Hypoechoic area (#) can be identified between lung parenchyma (*) and liver (□). EFAST, Extended focused assessment with sonography for trauma.

In addition to FAST, thoracic imaging using ultrasound has been incorporated into the initial trauma evaluation at many institutions (Fig. 1). This thoracoabdominal sonographic evaluation is named the extended FAST (EFAST) [8]. More than 10 years after the first report of ultrasound usage for the diagnosis of pneumothorax in animals, Dulchavsky et al. [38] investigated the efficacy of lung ultrasound in human trauma cases [47]. Compared to chest radiography, the sensitivity of ultrasound was 95%. Kirkpatrick et al. [8] compared lung ultrasound with chest radiography utilizing CT findings as the gold standard. The sensitivity of lung ultrasound was superior to chest radiography (48.8 vs. 20.9%). Interestingly, Soldati et al. [39] have shown not only higher sensitivity of lung ultrasound for pneumothorax detection compared to chest radiography (92 vs. 52%), but also the ability to detect the extent of the pneumothorax by describing the location of the lung point - the border between normal lung parenchyma and the pneumothorax. There is longterm controversy whether an occult pneumothorax can be safely observed without thoracostomy tube placement [45,48[•]]. In a multivariate logistic regression model, only progression of pneumothorax in repeat chest radiograph and respiratory distress were significant risk factors [49^{••}]. How EFAST will affect management of these occult pneumothoraces is unknown.

The use of ultrasound to diagnose an acute hemothorax was first described in 1993 [50]. Subsequent studies uniformly showed a high sensitivity and specificity for the detection of traumatic hemothorax [51–54]. A supine chest radiograph requires a minimum of 175 ml of fluid in chest cavity for diagnosis of a hemothorax as opposed to 20 ml by ultrasound [53]. The sensitivity of ultrasound for hemothorax detection was 97.5% and specificity was

 Table 3 Hemodynamic assessment of trauma/surgical intensive care unit patients with ultrasound

Author	Year	п	End point
Yanagawa <i>et al.</i> [55] Sefidbakht <i>et al.</i> [56] Yanagawa <i>et al.</i> [57] Carr <i>et al.</i> [58] Gunst <i>et al.</i> [59] Stawicki <i>et al.</i> [60]	2005 2007 2007 2007 2008 2009	35 88 30 70 85 83	Preload Preload Preload Preload Preload/cardiac function Preload/
Ferrada <i>et al.</i> [61••]	2011	53	Preload/cardiac function

99.7%, compared to 92.5 and 99.7%, respectively, for chest radiography in the study by Sisley *et al.* [51].

Ultrasound for the evaluation of hemodynamic status

Although bedside physical examination and basic vital signs are still crucial to evaluate the hemodynamic status of critically ill trauma patients who require resuscitation after the Emergency Department or operation, those are frequently unreliable for decision making in the ICU (Table 3 [55–60,61^{••}]) [62]. As the use of the pulmonary artery catheter (PAC) for critically ill patients has failed to show improved outcomes in most randomized studies, alternate methods of assessing volume status and cardiac function have been described without reaching any clear conclusions [63–65,66[•],67–69,70[•]].

Bedside echocardiography is a novel tool to be considered by intensivists in the evaluation of injured patients [71–73]. Most work is focused on the assessment of preload volume status and cardiac function including cardiac output $[58-60,61^{\bullet\bullet}]$.

The diameter of inferior vena cava (IVC) on CT scan and ultrasound has been shown to be inversely associated with intravascular volume depletion in trauma cases [55–57,74]. Carr *et al.* [58] conducted a pilot study in the surgical ICU at a Level 1 trauma center to evaluate the efficacy of intensivist bedside ultrasound (INBU) for preload volume assessment. Of 89% cases in which IVC was successfully visualized, smaller IVC diameter (<1 cm) and higher IVC collapse index (IVC-CI), calculated by [max IVC diameter] – [minimum IVC diameter]/[maximum IVC diameter], greater than 50% correlated with clinical judgment in 67 and 65%, respectively. These correlations were not significantly different from that of invasive central venous pressure (CVP) monitoring.

Recent literature supports the notion that the evaluation of cardiac function can be performed accurately by intensivists with portable echocardiography [71–73]. The methods of cardiac function evaluation varied from subjective judgment to acquisition of objective values such as ejection fraction or stroke volume. The utility of

	View	Task	Goal
Beat	Parasternal long	Stroke volume	Cardiac function
Effusion	Parasternal long	Subjective assessment	Pericardial effusion
Area	Parasternal short, apical four chamber	Subjective assessment	Right and left ventricular size, movement
Tank	Subcostal	IVC measurement	Volume status

Table 4 Summary of the Bedside Echocardiographic Assessment in Trauma/Critical Care examination

IVC, inferior vena cava.

noncardiologist performed echocardiography of injured patients has been demonstrated at Level 1 trauma centers where resident or fellow trainees are usually involved in the management [59,61^{••}]. Gunst et al. [59] showed significant correlation between echocardiographic data and PAC data in cardiac function and volume status assessment (Table 4). Ferrada et al. [61**] also demonstrated the encouraging result that an estimated ejection fraction could be obtained in 80% of patients. More importantly, the information from echocardiography answered the clinical question appropriately in 87% of cases and the management plan was changed based on the findings in more than half of cases. Of course, whether echocardiography-driven resuscitation will improve any measurable outcome in injured patients and, thus prove superior to PAC monitoring, remains to be seen.

Central line placement and detection of complications

Ultrasound guidance is considered standard of care for central venous catheter (CVC) placement especially when the internal jugular vein is approached [75,76]. Compared with the classical landmark technique, ultrasound-guidance results in a significantly higher success and lower complication rate [77,78]. CVCs are frequently required in critically ill trauma patients for the multiple reasons from massive transfusion to administration of vasoactive agents.

Even with standardized real-time ultrasound guidance, mechanical complications related to cannulation or catheter tip malposition are possible and could lead to serious sequelae [79]. Currently, chest radiograph is considered the gold standard as a postprocedure confirmatory image. Unfortunately, in a busy ICU, the delay in obtaining a chest radiograph and interpretation of the study can be considerable. Further, chest radiography may not be sufficiently sensitive to rule out complications effectively [80]. A novel technique that incorporates thoracic, vascular and cardiac ultrasound can be used to substitute for a chest radiograph as a confirmatory image [81^{••},82^{••},83]. This technique incorporates identification of a pneumothorax and hemothorax using the thoracic ultrasound performed in EFAST. Next, the catheter tip is localized using ultrasound windows from the bedside echocardiographic examination. In a series of surgical ICU patients with 83 catheter placements, our group demonstrated that this novel ultrasound technique, 'CVC sono', had a success rate of 71% [81^{••}] (Table 5). Although no thoracic complications were identified in our series, the total accuracy of CVC sono was 90% with a significantly shorter examination time, from order to completion of interpretation compared to portable chest radiography (10.8 vs. 75.3 min, P < 0.001). Vezzani *et al.* [82^{••}] used a similar technique in a mixed ICU with a similarly short study time. Their success rate for detecting the catheter tip in the right atrium was favorable with the use of a contrast enhanced technique [84]. Two pneumothoraces detected by chest radiograph were also identified with ultrasound. How these will be used in the wider injured patient population remains to be determined.

Conclusion

The indications for FAST should differ by injury type and hemodynamic stability for maximally efficient patient care, cognizant that alternate modalities are generally more sensitive, although potentially less safe. Although it is known that the sensitivity of EFAST is higher than chest radiography for diagnosis of

Table !	5	Summarv	of	CVC	sono	examination
Table v		Juilliary		~~~	30110	Chaimmation

Table 5 Summary of CVC solid examination					
Component of CVC sono	Complication to exclude	View			
Mechanical complication screen	Pneumothorax/hemothorax	Anterior/lateral thoracic			
Intravenous tip screen	Catheter malposition	Lateral neck: IJV			
		Subcostal: IVC			
Intracardiac tip screen	Catheter malposition	Parasternal short			
		Apex four chamber			
		Subcostal			

IJV, internal jugular vein; INV, innominate vein; IVC, inferior vena cava.

hemopneumothoraces, further prospective study will be required to determine the value of this additional information. Finally, ultrasound will likely be utilized more extensively to assist in the resuscitation of trauma patients after operative intervention and insertion of invasive lines in the ICU.

Acknowledgements

Conflicts of interest

There are no conflicts of interest.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 670).

- Rozycki GS. Abdominal ultrasonography in trauma. Surg Clin North Am 1995; 75:175–191.
- 2 Scalea TM, Rodriguez A, Chiu WC, et al. Focused assessment with sonography for trauma (FAST): results from an international consensus conference. J Trauma 1999; 46:466–472.
- 3 Patel NY, Riherd JM. Focused assessment with sonography for trauma:
- methods, accuracy, and indications. Surg Clin North Am 2011; 91:195-207. A comprehensive review of the basic technique and images of FAST.
- 4 American College of Surgeons Committee of Trauma. Advanced trauma life support. 8th ed. Chicago: American College of Surgeons; 2008.
- 5 Tillou A, Gupta M, Baraff LJ, et al. Is the use of pan-computed tomography for blunt trauma justified? A prospective evaluation. J Trauma 2009; 67:779– 787.
- 6 Salim A, Sangthong B, Martin M, et al. Whole body imaging in blunt multisystem trauma patients without obvious signs of injury: results of a prospective study. Arch Surg 2006; 141:468–473; discussion 473–475.
- 7 Huber-Wagner S, Lefering R, Qvick LM, et al. Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet 2009; 373:1455–1461.
- 8 Kirkpatrick AW, Sirois M, Laupland KB, et al. Hand-held thoracic sonography for detecting posttraumatic pneumothoraces: the Extended Focused Assessment with Sonography for Trauma (EFAST). J Trauma 2004; 57:288–295.
- 9 Rozycki GS, Ochsner MG, Schmidt JA, et al. A prospective study of surgeonperformed ultrasound as the primary adjuvant modality for injured patient assessment. J Trauma 1995; 39:492–498; discussion 498–500.
- 10 Rozycki GS, Ballard RB, Feliciano DV, et al. Surgeon-performed ultrasound for the assessment of truncal injuries: lessons learned from 1540 patients. Ann Surg 1998; 228:557–567.
- 11 Boulanger BR, Kearney PA, Tsuei B, Ochoa JB. The routine use of sonography in penetrating torso injury is beneficial. J Trauma 2001; 51:320-325.
- 12 Udobi KF, Rodriguez A, Chiu WC, Scalea TM. Role of ultrasonography in penetrating abdominal trauma: a prospective clinical study. J Trauma 2001; 50:475–479.
- 13 Soffer D, McKenney MG, Cohn S, et al. A prospective evaluation of ultrasonography for the diagnosis of penetrating torso injury. J Trauma 2004; 56:953–957; discussion 957–959.
- 14 Kirkpatrick AW, Sirois M, Ball CG, et al. The hand-held ultrasound examination for penetrating abdominal trauma. Am J Surg 2004; 187:660–665.
- 15 Friese RS, Malekzadeh S, Shafi S, et al. Abdominal ultrasound is an unreliable modality for the detection of hemoperitoneum in patients with pelvic fracture. J Trauma 2007; 63:97–102.
- Natarajan B, Gupta PK, Cemaj S, et al. FAST scan: is it worth doing in hemodynamically stable blunt trauma patients? Surgery 2010; 148:695-

700; discussion 700-701. This single-center retrospective study questioned the efficacy of FAST in hemodynamically stable blunt trauma patients. Because of its low sensitivity, the use of FAST should be limited to stable patients.

17 Grüessner R, Mentges B, Düber C, et al. Sonography versus peritoneal lavage in blunt abdominal trauma. J Trauma 1989; 29:242–244.

- 18 Kimura A, Otsuka T. Emergency center ultrasonography in the evaluation of hemoperitoneum: a prospective study. J Trauma 1991; 31:20-23.
- **19** Tso P, Rodriguez A, Cooper C, *et al.* Sonography in blunt abdominal trauma: a preliminary progress report. J Trauma 1992; 33:39–44.
- 20 Han DC, Rozycki GS, Schmidt JA, Feliciano DV. Ultrasound training during ATLS: an early start for surgical interns. J Trauma 1996; 41:208–213.
- Neal MD, Peitzman AB, Forsythe RM, *et al.* Over reliance on computed
 tomography imaging in patients with severe abdominal injury: is the delay worth the risk? J Trauma 2011; 70:278–284.

A review of National Trauma Data Bank (NTDB) which demonstrates that the usage of CT scan for the hypotensive blunt trauma patients is a significant predictor of poor outcome. FAST is particularly accurate and useful for unstable patients.

- 22 Hoffman L, Pierce D, Puumala S. Clinical predictors of injuries not identified by focused abdominal sonogram for trauma (FAST) examinations. J Emerg Med 2009; 36:271–279.
- 23 Rieger M, Czermak B, El Attal R, et al. Initial clinical experience with a 64-MDCT whole-body scanner in an emergency department: better time management and diagnostic quality? J Trauma 2009; 66:648-657.
- 24 Eastman AL, Chason DP, Perez CL, et al. Computed tomographic angiography for the diagnosis of blunt cervical vascular injury: is it ready for primetime? J Trauma 2006; 60:925–929; discussion 929.
- 25 Stengel D, Bauwens K, Sehouli J, et al. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma. Cochrane Database Syst Rev 2005:CD004446.
- 26 Rose JS, Levitt MA, Porter J, et al. Does the presence of ultrasound really affect computed tomographic scan use? A prospective randomized trial of ultrasound in trauma. J Trauma 2001; 51:545–550.
- 27 Chiu WC, Wong-You-Cheong JJ, Rodriguez A, et al. Ultrasonography for interval assessment in the nonoperative management of hepatic trauma. Am Surg 2005; 71:841–846.
- 28 Wurmb TE, Frühwald P, Hopfner W, et al. Whole-body multislice computed tomography as the first line diagnostic tool in patients with multiple injuries: the focus on time. J Trauma 2009; 66:658–665.
- 29 Rozycki GS, Ochsner MG, Jaffin JH, Champion HR. Prospective evaluation of surgeons' use of ultrasound in the evaluation of trauma patients. J Trauma 1993; 34:516–526; discussion 526–527.
- Quinn AC, Sinert R. What is the utility of the Focused Assessment with
 Sonography in Trauma (FAST) exam in penetrating torso trauma? Injury 2011; 42:482-487.

This literature review showed low sensitivity and high specificity of FAST for penetrating injury. A negative FAST requires further diagnostic work up to rule out significant organ injuries that may require surgical intervention.

- 31 Soffer D, Cohn SM. Futility of abdominal ultrasound in penetrating abdominal injuries. J Trauma 2009; 67:1130.
- 32 Shaftan GW. Indications for operation in abdominal trauma. Am J Surg 1960; 99:657–664.
- 33 Biffl WL, Kaups KL, Cothren CC, et al. Management of patients with anterior abdominal stab wounds: a Western Trauma Association multicenter trial. J Trauma 2009; 66:1294–1301.
- 34 Fry WR, Smith RS, Schneider JJ, et al. Ultrasonographic examination of wound tracts. Arch Surg 1995; 130:605-607; discussion 608.
- 35 Murphy JT, Hall J, Provost D. Fascial ultrasound for evaluation of anterior abdominal stab wound injury. J Trauma 2005; 59:843–846.
- 36 Rozycki GS, Feliciano DV, Schmidt JA, et al. The role of surgeon-performed ultrasound in patients with possible cardiac wounds. Ann Surg 1996; 223:737-744; discussion 744-746.
- 37 Rozycki GS, Feliciano DV, Ochsner MG, et al. The role of ultrasound in patients with possible penetrating cardiac wounds: a prospective multicenter study. J Trauma 1999; 46:543–551; discussion 551–552.
- 38 Dulchavsky SA, Schwarz KL, Kirkpatrick AW, et al. Prospective evaluation of thoracic ultrasound in the detection of pneumothorax. J Trauma 2001; 50:201-205.
- 39 Soldati G, Testa A, Sher S, et al. Occult traumatic pneumothorax: diagnostic accuracy of lung ultrasonography in the emergency department. Chest 2008; 133:204–211.
- 40 Nandipati KC, Allamaneni S, Kakarla R, et al. Extended focused assessment
- with sonography for trauma (EFAST) in the diagnosis of pneumothorax: experience at a community based level I trauma center. Injury 2010; 41:862-865.

In this prospective study, sensitivity of EFAST for detection of a traumatic pneumothorax was higher than chest radiography in both blunt and penetrating trauma patients. However, the role of EFAST still remains uncertain in current trauma management.

- 41 Shorr RM, Crittenden M, Indeck M, et al. Blunt thoracic trauma. Analysis of 515 patients. Ann Surg 1987; 206:200–205.
- 42 Miller LA. Chest wall, lung, and pleural space trauma. Radiol Clin North Am 2006; 44:213-224.
- 43 Reardon R, Joing S. Hemothorax after a stab wound to the chest, with clear breath sounds and a normal radiograph. Acad Emerg Med 2006; 13:786.
- 44 Wilkerson RG, Stone MB. Sensitivity of bedside ultrasound and supine
 anteroposterior chest radiographs for the identification of pneumothorax after blunt trauma. Acad Emerg Med 2010; 17:11-17.

High sensitivity of EFAST for pneumothorax was shown in this literature review. Most studies have showed higher than 90% sensitivity of EFAST compared to chest radiography with approximately 50% sensitivity.

- 45 Ball CG, Kirkpatrick AW, Feliciano DV. The occult pneumothorax: what have we learned? Can J Surg 2009; 52:E173–E179.
- 46 Ball CG, Kirkpatrick AW, Laupland KB, et al. Incidence, risk factors, and outcomes for occult pneumothoraces in victims of major trauma. J Trauma 2005; 59:917–924; discussion 924–925.
- 47 Rantanen NW. Diseases of the thorax. Vet Clin North Am Equine Pract 1986; 2:49-66.
- 48 Mowery NT, Gunter OL, Collier BR, et al. Practice management guidelines for management of hemothorax and occult pneumothorax. J Trauma 2011; 70:510-518.

This evidence-based management guideline covers extensive topics of thoracic injury from diagnosis to surgical intervention. Ultrasound is recommended as reliable tool for the diagnosis of pneumothorax and pleural effusion.

 49 Moore FO, Goslar PW, Coimbra R, *et al.* Blunt traumatic occult pneumothorax: is observation safe? Results of a prospective, AAST multicenter study. J Trauma 2011: 70:1019–1025.

The management of occult pneumothorax is still controversial. This prospective study implies that worsening pneumothorax seen on a repeat chest radiograph and development of respiratory symptoms are significant predictors of the need for tube thoracostomy. However, the efficacy of ultrasound as the repeat imaging study for the patient with an occult pneumothorax is unknown.

- 50 Röthlin MA, Näf R, Amgwerd M, et al. Ultrasound in blunt abdominal and thoracic trauma. J Trauma 1993; 34:488–495.
- 51 Sisley AC, Rozycki GS, Ballard RB, et al. Rapid detection of traumatic effusion using surgeon-performed ultrasonography. J Trauma 1998; 44:291–296; discussion 296–297.
- 52 Brooks A, Davies B, Smethhurst M, et al. Emergency ultrasound in the acute assessment of haemothorax. Emerg Med J 2004; 21:44-46.
- 53 Ma OJ, Mateer JR. Trauma ultrasound examination versus chest radiography in the detection of hemothorax. Ann Emerg Med 1997; 29:312–315; discussion 315–316.
- 54 Abboud PA, Kendall J. Emergency department ultrasound for hemothorax after blunt traumatic injury. J Emerg Med 2003; 25:181–184.
- 55 Yanagawa Y, Nishi K, Sakamoto T, *et al.* Early diagnosis of hypovolemic shock by sonographic measurement of inferior vena cava in trauma patients. J Trauma 2005; 58:825–829.
- 56 Sefidbakht S, Assadsangabi R, Abbasi HR, et al. Sonographic measurement of the inferior vena cava as a predictor of shock in trauma patients. Emerg Radiol 2007; 14:181–185.
- 57 Yanagawa Y, Sakamoto T, Okada Y. Hypovolemic shock evaluated by sonographic measurement of the inferior vena cava during resuscitation in trauma patients. J Trauma 2007; 63:1245–1248; discussion 1248.
- 58 Carr BG, Dean AJ, Everett WW, et al. Intensivist bedside ultrasound (INBU) for volume assessment in the intensive care unit: a pilot study. J Trauma 2007; 63:495–500; discussion 500–502.
- 59 Gunst M, Ghaemmaghami V, Sperry J, et al. Accuracy of cardiac function and volume status estimates using the bedside echocardiographic assessment in trauma/critical care. J Trauma 2008; 65:509–516.
- 60 Stawicki SP, Braslow BM, Panebianco NL, et al. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg 2009; 209:55–61.
- Ferrada P, Murthi S, Anand RJ, *et al.* Transthoracic focused rapid echocardiographic examination: real-time evaluation of fluid status in critically ill trauma patients. J Trauma 2011; 70:56–62; discussion 62–64.

This article supports the use of bedside echocardiography by the intensivist in the evaluation of severely injured patients. It is noteworthy that the management plan was modified based on the result of echocardiography in greater than half of cases.

- 62 Sevransky J. Clinical assessment of hemodynamically unstable patients. Curr Opin Crit Care 2009; 15:234–238.
- **63** Sandham JD, Hull RD, Brant RF, *et al.* A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 2003; 348:5–14.

- **64** Richard C, Warszawski J, Anguel N, *et al.* Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003; 290:2713–2720.
- 65 Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 2005; 294:1625–1633.

 66 Slagt C, Breukers RM, Groeneveld AB. Choosing patient-tailored hemodynamic monitoring. Crit Care 2010; 14:208.

This review article proposed several factors on how to choose the appropriate hemodynamic monitoring modality in critically ill patients.

- 67 Stewart RM, Park PK, Hunt JP, et al. Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J Am Coll Surg 2009; 208:725-735; discussion 735-737.
- 68 National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 2006; 354:2213–2224.
- **69** De Vaal JB, de Wilde RB, van den Berg PC, *et al.* Less invasive determination of cardiac output from the arterial pressure by aortic diameter-calibrated pulse contour. Br J Anaesth 2005; 95:326–331.
- Hadian M, Kim HK, Severyn DA, et al. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care 2010; 14:R212.

A study demonstrating the validity of different hemodynamic monitoring techniques. Despite the similarity in the mean cardiac output value, there are poor correlations of their trends.

- 71 Melamed R, Sprenkle MD, Ulstad VK, et al. Assessment of left ventricular function by intensivists using hand-held echocardiography. Chest 2009; 135:1416-1420.
- 72 Manasia AR, Nagaraj HM, Kodali RB, et al. Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (SonoHeart) in critically ill patients. J Cardiothorac Vasc Anesth 2005; 19:155–159.
- 73 Vignon P, Dugard A, Abraham J, et al. Focused training for goal-oriented handheld echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Med 2007; 33:1795–1799.
- 74 Mirvis SE, Shanmuganathan K, Erb R. Diffuse small-bowel ischemia in hypotensive adults after blunt trauma (shock bowel): CT findings and clinical significance. AJR Am J Roentgenol 1994; 163:1375–1379.
- 75 National Institute for Clinical Excellence. Guideline on the use of ultrasound location devices for placing central venous catheters. [NICE Technology appraisal guidance, No. 49]. London: NICE; 2002.
- 76 Graham AS, Ozment C, Tegtmeyer K, et al. Videos in clinical medicine. Central venous catheterization. N Engl J Med 2007; 356:e21.
- 77 Hind D, Calvert N, McWilliams R, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 2003; 327:361.
- 78 Karakitsos D, Labropoulos N, Groot ED, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 2006; 10:R162.
- 79 McGee D, Gould M. Preventing complications of ventral venous catheterization. N Engl J Med 2003; 348:1123–1133.
- 80 Wirsing M, Schummer C, Neumann R, et al. Is traditional reading of the bedside chest radiograph appropriate to detect intraatrial central venous catheter position? Chest 2008; 134:527–533.
- 81 Matsushima K, Frankel HL. Bedside ultrasound can safely eliminate the need for chest radiographs after central venous catheter placement: CVC sono in the surgical ICU (SICU). J Surg Res 2010; 163:155–161.

A prospective study in the surgical ICU identified the factors for inability to acquire an adequate ultrasound study. Time between the procedure and confirmation of catheter was significantly shorter using CVC sono than a conventional chest radiograph protocol.

 82 Vezzani A, Brusasco C, Palermo S, *et al.* Ultrasound localization of central vein catheter and detection of postprocedural pneumothorax: an alternative to chest radiography. Crit Care Med 2010; 38:533-538.

High sensitivity and specificity for the identification of pneumothorax and catheter malposition was demonstrated in this prospective study. A supplemental technique, a microbubbling test, was described for the diagnosis of catheter tip malposition.

- 83 Maury E, Guglielminotti J, Alzieu M, et al. Ultrasonic examination: an alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med 2001; 164:403–405.
- 84 Jauss M, Zanette E. Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis 2000; 10:490-496.