

#### US006390091B1

## (12) United States Patent

Banner et al.

# (10) Patent No.: US 6,390,091 B1

(45) **Date of Patent:** May 21, 2002

#### (54) METHOD AND APPARATUS FOR CONTROLLING A MEDICAL VENTILATOR

(75) Inventors: Michael Joseph Banner; Paul

Bradford Blanch, both of Alachua; Johannes H. van Oostrom; Richard Joel Melker, both of Gainesville, all of

FL (US)

(73) Assignee: University of Florida, Gainesville, FL

(US)

(\*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/243,258

(22) Filed: Feb. 3, 1999

(51) **Int. Cl.**<sup>7</sup> ...... **A61M 16/00**; A62B 7/00; F16K 31/02

(52) **U.S. Cl.** ...... **128/204.21**; 128/202.22; 128/204.18

#### (56) References Cited

### U.S. PATENT DOCUMENTS

| 3,595,226 | Α |   | 7/1971  | Newcombe        |            |
|-----------|---|---|---------|-----------------|------------|
| 3,807,396 | A | * | 4/1974  | Fischel         | 128/204.26 |
| 4,520,812 | A | * | 6/1985  | Freitag et al   | 128/204.25 |
| 4,565,194 | A |   | 1/1986  | Weerda et al.   |            |
| 4,773,411 | A | * | 9/1988  | Downs           | 128/204.18 |
| 4,813,431 |   |   | 3/1989  | Brown           |            |
| 4,957,107 | A | * | 9/1990  | Sipiw           | 128/204.21 |
| 4,986,268 | A |   | 1/1991  | Tehrani         |            |
| 4,990,894 | A |   | 2/1991  | Loescher et al. |            |
| 5,107,831 | A |   | 4/1992  | Halpern et al.  |            |
| 5,161,525 | A | * | 11/1992 | Kimm et al      | 128/204.26 |
| 5,307,795 | A | * | 5/1994  | Whitwam et al   | 128/204.25 |
| 5,316,009 | A | * | 5/1994  | Yamada          | 128/204.23 |
| 5,331,995 | A |   | 7/1994  | Westfall et al. |            |
| 5,335,650 | A |   | 8/1994  | Shaffer et al.  |            |
| 5,349,946 | A | * | 9/1994  | McComb          | 128/203.17 |
| 5,390,666 | A | * | 2/1995  | Kimm et al      | 128/204.26 |
| 5,402,796 | A |   | 4/1995  | Packer et al.   |            |
|           |   |   |         |                 |            |

| 5,429,123 A | 7/1005    | Chaffan at al              |
|-------------|-----------|----------------------------|
| / /         | //1993    | Shaffer et al.             |
| 5,546,935 A | 8/1996    | Champeau                   |
| 5,549,106 A | 8/1996    | Gruenke et al.             |
| 5,582,163 A | * 12/1996 | Bonassa 128/204.26         |
| 5,598,838 A | * 2/1997  | Servidio et al 128/204.23  |
| 5,660,171 A | * 8/1997  | Kimm et al 128/204.23      |
| 5,692,497 A | * 12/1997 | Schnitzer et al 128/204.21 |
| 5,752,921 A | * 5/1998  | Orr 600/533                |
| 5,794,615 A | * 8/1998  | Estes 128/204.23           |
| 5,803,066 A | * 9/1998  | Rapoport et al 128/204.23  |
| 5,884,622 A | 3/1999    | Younes                     |

<sup>\*</sup> cited by examiner

Primary Examiner—John G. Weiss Assistant Examiner—Joseph F. Weiss, Jr. (74) Attorney, Agent, or Firm—Needle & Rosenberg, P.C.

#### (57) ABSTRACT

An open- or closed-loop method and corresponding medical ventilator for providing breathing gas to a patient such that the patient exerts a desired work of breathing during pressure support ventilation, and such that the work of breathing of the patient is monitored and the pressure and/or flow rate of the breathing gas provided to the patient is controlled throughout the inspiratory phase to provide a pressure support ventilation level that provides the desired work of breathing in the patient. The medical ventilator includes at least a pressure sensor and a flow rate sensor, disposed in a functionally open ventilator conduit in fluid communication with the lungs of the patient, electrically coupled to a microprocessor to monitor the average respiratory muscle pressure of the patient and to predict the patient work of breathing as a function of the current value of the average respiratory muscle pressure of the patient, to detect when the patient work of breathing is not within a predetermined work of breathing range, and to generate a response signal thereof. Further, the medical ventilator has a driver circuit electrically coupled to the microprocessor and to an actuator of a pneumatic system which, responsive to the response signal, may adjust the selected pressure support ventilation level of the breathing gas provided to the patient by the ventilator until a pressure support ventilation level is reached such that the patient work of breathing is within the predetermined work of breathing range.

#### 45 Claims, 12 Drawing Sheets

