

Patent Number:

Date of Patent:

[45]

United States Patent [19]

Lampotang et al.

APPARATUS AND METHOD FOR SIMULATING BRONCHIAL RESISTANCE OR DILATION

[75] Inventors: Samsun Lampotang; Willem L. van Meurs; Michael L. Good; Joachim S.

Gravenstein; Ronald G. Carovano, all

of Gainesville, Fla.

[73] Assignee: University of Florida Research

Foundation, Inc., Gainsville, Fla.

[21] Appl. No.: 767,948

Dec. 17, 1996 [22] Filed:

Related U.S. Application Data

Division of Ser. No. 188,383, Jan. 27, 1994, Pat. No. 5,584,701, which is a continuation-in-part of Ser. No. 882, 476, May 13, 1992, Pat. No. 5,391,081.

434/272, 275; 128/774; 251/251, 205, 208

[56] References Cited

U.S. PATENT DOCUMENTS

3,520,071	7/1970	Abrahamson et al	
3,661,052	5/1972	Lucien et al	
3,808,706	5/1974	Mosley et al	
4,167,070	9/1979	Orden .	
4,561,851	12/1985	Ferreira et al	
4,570,640	2/1986	Barsa .	
4,878,388	11/1989	Loughlin et al	
4,907,973	3/1990	Hon.	
5,385,474	1/1995	Brindle 434/267	,
5,403,192	4/1995	Kleinwaks et al	
5,509,810	4/1996	Schertz et al 434/262	2

OTHER PUBLICATIONS

M.L. Good, M.D., and J.S. Gravenstein, M.D., Anesthesia Simulators and Training Device, International Anesthesiology Clinics 27:161-164 (1989).

Good, et al., Hybrid Lung Model for Use in Anesthesia Research and EducationAnesthesiology, Hybrid Lung Model for Use in Anesthesia Research and Education, 71:982-984 (1989).

5,772,442

Jun. 30, 1998

D.M. Gaba, M.D. and A. DeAnda, A Comprehensive Anesthesia Simulation Environment: Re-creating the Operating Room for Research and Training, Anesthesiology, 69:387-389 (1988).

M.L. Good, et al., Critical Events Simulation for Training in Anesthesiology, Journal of Clinical Monitoring, 4:140 (1988).

S. Lampotang, et al., A lung model of carbon dioxide concentrations with mechanical or spontaneous ventilation, Critical Care Medicine, 14:1055-1057, (1986).

S. Abrahamson, Chapter 31: Human Simulation for Training in Anesthesiology, Medical Engineering, pp. 370-374.

J.S. Densen, M.D. and S. Abrahamson, Ph.D., A Computer-Controlled Pateint Simulator, JAMA, 208:504-508, (1969).

Ross et al., Servocontrolled Closed Circuit Anaesthesia: A method for the automatic controlof anaethesia produced by a volatile agent in oxygen, British Journal of Anesthesia, 44:1053-1060 (1983).

Primary Examiner—John P. Leubecker Attorney, Agent, or Firm-Needle & Rosenberg, P.C.

ABSTRACT

An apparatus and method for simulating bronchial resistance or dilation in real time in an integrated patient simulator during simulated medical procedures is realized by a manikin having a simulated trachea and a simulated lung, a conduit interconnecting the simulated trachea and the simulated lung for propagating a flow of gas, and a restricting device for variably restricting the flow of gas through the conduit. The restricting device includes a nautilus shaped cam and a stepper motor for rotating the cam such that a selected surface of the cam is disposed within a opening in the conduit so as to continuously vary the size of the opening.

10 Claims, 7 Drawing Sheets

